\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Name: Basic Mathematics

Subject Code:2TE01BMT1
Course Name:Diploma
Semester

Date :5/4/2015
Marks: 70
Time:10:30 To 01:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

Q-1 Do as directed.
(1) $\log _{\mathrm{a}} \mathrm{a}=$ \qquad .
(2) $\log 1 \cdot \log 2 \cdot \log 3=$ \qquad .
(3) $\log 10-\log 5=$ \qquad .
(4) $\log 2+\log 3=$ \qquad .
(5) $9 \mathrm{C}_{6}=$ \qquad
(6) Number of terms in the expansion of $(5 x+4)^{6}=$ \qquad .
(7) Order of matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 4 & 2\end{array}\right]=$ \qquad $-$
(8) If $\mathrm{A}=\left[\begin{array}{l}7 \\ 2\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{ll}3 & 4\end{array}\right]$ then $\mathrm{A}+\mathrm{B}=$ \qquad .
(9) Magnitude of $3 \mathrm{i}-4 \mathrm{j}-2 \mathrm{k}=$ \qquad .
(10) If $\mathrm{A}=\mathrm{i}-\mathrm{j}+\mathrm{k}$ then $\widehat{\mathrm{A}}=$ \qquad .
(11) If $a=i+j$ and $b=j-k$ then $a \cdot b=$ \qquad .
(12) $\sin \frac{\pi}{3} \cos \frac{\pi}{2} \sin \frac{\pi}{4} \cos \pi=$ \qquad —.
(13) $\frac{\pi}{12}$ radian $=$ \qquad degree.
(14) $60^{\circ}=$ \qquad radian.

Attempt any four
Q - 2
(1) Prove that $\log _{m} x+\log _{m^{2}} x^{2}+\log _{m} x^{3}+\log _{m^{4}} 4 x^{4}=4 \log _{m} x$.
(2) Prove that $\log \left(x+\sqrt{x^{2}-1}\right)+\log \left(x-\sqrt{x^{2}-1}\right)=0$.
(3) Prove that $\log _{y} x^{2} \log _{z} y^{3} \log _{x} z^{4}=24$.

Q-3
(1) Find the constant term of $\left(2 x^{2}-\frac{1}{x}\right)^{6}$.
(2) Find the $7^{\text {th }}$ term of $\left(x-\frac{1}{x}\right)^{9}$.
(3) Find the approximate value of $\frac{1}{\sqrt[8]{997}}$ using binomial theorem.

Q-4
(1) If $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -2 \\ 0 & 5 \\ 3 & 1\end{array}\right]$,find value of $2 A-3 B$ and $3 A-2 B$.
(2) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, prove that $A^{2}-5 A-2 I=O$.
(3) If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 2\end{array}\right], B=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 5 & 0\end{array}\right]$, find matrix X from $X+A+B=O$.

Q-5
(1) If $M=\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right], N=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]$, prove that $(M N)^{T}=N^{T} M^{T}$.
(2) Solve the equations using matrix method: $5 x+3 y=11$

$$
\begin{equation*}
3 x-2 y=-1 \tag{5}
\end{equation*}
$$

(3) If $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, prove that A^{4} is an identity matrix.

Q-6
(1) Prove that angle between two vectors $\mathrm{i}+2 \mathrm{j}$ and $\mathrm{i}+\mathrm{j}+3 \mathrm{k}$ is $\sin ^{-1}\left(\sqrt{\frac{46}{55}}\right)$.
(2) Forces $(1,2,3),(-1,2,3)$ and $(-1,2,-3)$ act on a particles and the particle moves from the point $(0,1,-2)$ to $(-1,3,2)$. Find the work done by the forces.
(3) If $\mathrm{a}=2 \mathrm{i}+\mathrm{j}-\mathrm{k}, \mathrm{b}=\mathrm{i}-\mathrm{j}+2 \mathrm{k}$ and $\mathrm{c}=\mathrm{i}-2 \mathrm{j}+\mathrm{k}$, find the direction cosines of $a+b-2 c$.

Q-7
(1) Draw the graph of $y=\cos x(0 \leq x \leq \pi)$.
(2) Prove that $\tan 57^{\circ}=\frac{\cos 12^{x}+\sin 12^{x}}{\cos 12^{x}-\sin 12^{x}}$
(3) Prove that $\cos \frac{3 \pi}{19}+\cos \frac{7 \pi}{19}+\cos \frac{12 \pi}{19}+\cos \frac{16 \pi}{19}=0$.

Q-8
(1) Prove that $\frac{\sin 3 A}{\sin A}-\frac{\cos 3 A}{\cos A}=2$.
(2) Prove that $\frac{\cos A+\cos 3 A+\cos 5 A}{\sin A+\sin 3 A+\sin 5 A}=\cot 3 A$.
(3) Prove that $\tan ^{-1}(\infty)+\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(\frac{1}{2}\right)=\frac{7 \pi}{6}$.

