Enrollment No:	Exam Seat No:
C.U.SHAH UNIVERSITY Summer-2015	
 Instructions: 1) Attempt all Questions of both sections 2) Use of Programmable calculator & any 	
 Instructions written on main answer b Draw neat diagrams & figures (if necession) Assume suitable & perfect data if need 	ook are strictly to be obeyed. ssary) at right places.
Q-1 Do as directed.	(14)
(1) $\log_a a = $	
(2) $\log 1 \cdot \log 2 \cdot \log 3 = $ (3) $\log 10 - \log 5 = $	
(4) $\log 2 + \log 3 = $	
(5) 9C ₆ =	
(6) Number of terms in the expansion of $(5x)$	$(+4)^6 = $
(7) Order of matrix $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix} = \underline{\qquad}$.	
(8) If $A = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ then $A + B =$	·
(9) Magnitude of $3i - 4j - 2k = $	
(10) If $A = i - j + k$ then $\overline{A} = $	
(11) If $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = \mathbf{j} - \mathbf{k}$ then $\mathbf{a} \cdot \mathbf{b} = _$ (12) $\sin \frac{\pi}{3} \cos \frac{\pi}{2} \sin \frac{\pi}{4} \cos \pi = _$.	
$(13)\frac{\pi}{12} \text{ radian} = \underline{\qquad} \text{degree.}$	
(14) $60^\circ = _\radian.$	
Attempt any four	
Q-2 (1) Prove that $\log_m x + \log_m x^2 + \log_m x^3$	$+\log_{m^4}x^4 = 4\log_m x. \tag{5}$
(1) Prove that $\log_m x + \log_m x + \log_m x$ (2) Prove that $\log(x + \sqrt{x^2 - 1}) + \log(x - 1)$	
(3) Prove that $\log_y x^2 \log_z y^3 \log_x z^4 = 24$.	(4)
Q – 3	
Page 1 of 2	

4-15

(1) Find the constant term of
$$\left(2x^2 - \frac{1}{x}\right)^6$$
. (5)

(2) Find the 7th term of
$$\left(x - \frac{1}{x}\right)$$
. (5)
(3) Find the approximate value of $\frac{1}{3007}$ using binomial theorem. (4)

(3) Find the approximate value of $\frac{1}{\sqrt[3]{997}}$ using binomial theorem.

(1) If
$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$, find value of $2\mathbf{A} - 3\mathbf{B}$ and $3\mathbf{A} - 2\mathbf{B}$. (5)

(2) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, prove that $A^2 - 5A - 2I = O.$ (5)
(2) If $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 4 \end{bmatrix}$ if $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 4 \end{bmatrix}$ if $A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 4 \end{bmatrix}$ (5)

(3) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 5 & 0 \end{bmatrix}$, find matrix X from X + A + B = O. (4)

(1) If
$$\mathbf{M} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{N} = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$, prove that $(\mathbf{MN})^{\mathrm{T}} = \mathbf{N}^{\mathrm{T}}\mathbf{M}^{\mathrm{T}}$. (5)

(2) Solve the equations using matrix method:
$$5x + 3y = 11$$

 $3x - 2y = -1$ (5)

(3) If
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, prove that \mathbf{A}^4 is an identity matrix. (4)

- (1) Prove that angle between two vectors i + 2j and i + j + 3k is $\sin^{-1}\left(\sqrt{\frac{46}{55}}\right)$. (5)
- (2) Forces (1, 2, 3), (-1, 2, 3) and (-1, 2, -3) act on a particles and the particle moves from the point (0, 1, -2) to (-1, 3, 2). Find the work done by the forces. (5)
- (3) If a = 2i + j k, b = i j + 2k and c = i 2j + k, find the direction cosines of a + b - 2c. (4)

(1) Draw the graph of
$$\mathbf{y} = \cos x \ (\mathbf{0} \le \mathbf{x} \le \pi)$$
. (5)

(2) Prove that
$$\tan 57^\circ = \frac{\cos 12^\circ + \sin 12^\circ}{\cos 12^\circ - \sin 12^\circ}$$
 (5)

(3) Prove that
$$\cos \frac{3\pi}{19} + \cos \frac{7\pi}{19} + \cos \frac{12\pi}{19} + \cos \frac{16\pi}{19} = 0.$$
 (4)

(1) Prove that
$$\frac{\sin 3A}{\sin A} - \frac{\cos 3A}{\cos A} = 2.$$
 (5)

(2) Prove that
$$\frac{\cos A + \cos 5A}{\sin A + \sin 3A + \sin 5A} = \cot 3A.$$
 (5)

(3) Prove that
$$\tan^{-1}(\infty) + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) = \frac{7\pi}{6}$$
. (4)

